Facebook создала инструмент для распознавания дипфейков, позволяющий вычислить автора подделки

Техно

Для Facebook дипфейки (поддельные изображения, созданные ИИ) в настоящий момент не являются большой проблемой, однако компания продолжает финансировать исследования, связанные с этой технологией, чтобы иметь возможность защититься от потенциальных угроз в будущем. Одна из последних работ в этом направлении была проведена вместе с учёными из Университета штата Мичиган. Команда специалистов разработала метод декомпиляции дипфейков.

Специалисты объясняют, что их технология позволяет проводить анализ изображений, созданных алгоритмами ИИ, и выявлять идентифицирующие характеристики модели машинного обучения, с помощью которой была создана конкретная подделка.

Программа полезна тем, что в перспективе сможет помочь Facebook отслеживать злоумышленников, распространяющих дипфейки с различными преступными целями. Например, пользователей могут шантажировать с помощью поддельных интимных фото или видео. Отмечается, что разработка декомпилятора дипфейков ещё не завершена, поэтому программа пока не готова к развёртыванию.

Предыдущие исследования в этой области позволили определить, какая из известных моделей ИИ сгенерировала тот или иной дипфейк, однако новая разработка специалистов из Facebook и Университета штата Мичиган лучше подойдёт для практического применения. Она позволяет определять архитектурные особенности систем для создания дипфейков, основанные на неизвестных моделях. Эти характеристики, известные как гиперпараметры, присутствуют в каждой модели машинного обучения. В совокупности они создают уникальный отпечаток на готовом изображении, который затем можно использовать для определения источника дипфейка.

По словам ведущего специалиста Facebook Тала Хасснера (Tal Hassner), участвующего в проекте разработки декомпилятора дипфейков, возможность выявления особенностей неизвестных моделей очень важна, поскольку ПО для дипфейков очень легко изменять, что позволяет злоумышленникам эффективно заметать следы.

Несуществующие люди, созданные программой для генерации дипфейков (Изображение: The Verge)

«Предположим, злоумышленник создаёт множество разных дипфейков и загружает их на разные платформы под видом разных пользователей. Если для создания дипфейков применялась новая модель ИИ, которую никто раньше не видел, то выяснить все детали, связанные с созданием изображения будет невозможно. С новой технологией мы можем определить, что загруженное на разные платформы изображение было создано одной и той же моделью машинного обучения. А получив доступ к ПК, на котором это изображение было создано, мы сможем уверенно указать на виновника», — объяснил Хасснер.

Читайте также:  Фейсбук vs Трамп: Цукерберг нанес по экс-президенту США новый удар

Хасснер сравнивает свою разработку с методом экспертно-криминалистического анализа, использующегося для определения модели фотоаппарата, с помощью которого были произведены снимки. Суть анализа заключается в поиске на этих снимках определённых закономерностей или оптических дефектов, создаваемых только конкретной моделью камеры.

«Не каждый может создать свою собственную камеру, но любой, кто обладает достаточным опытом и доступом к обычному ПК, может создать свою собственную модель для генерации дипфейков», — добавляет Хасснер.

Созданный учёными из Университета штата Мичиган и Facebook алгоритм способен не только определять черты той или иной генеративной модели, но также выяснять, какая из известных моделей могла применяться в создании дипфейка и является ли вообще представленное изображение подделкой. По словам Хасснера, система обладает весьма высоким показателем эффективности. Однако точных значений не приводит.

Следует указать, что даже самые современные алгоритмы определения дипфейков в настоящий момент далеки от совершенства. И сами специалисты, занимающиеся этим вопросом, прекрасно это осознают. Когда в прошлом году Facebook проводила конкурс, посвящённый поиску дипфейков, победителем оказался алгоритм, который мог определять недостоверность изображений только в 65,18 % случаев. Частично это объясняется тем, что область разработки генеративного ИИ очень активно развивается. Новые методы публикуются практически каждый день и фильтры распознавания попросту за ними не поспевают.